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Abstract

This is a thesis focusing on the additions made to the open source software OpenSpace,
during a semester at the American Museum of Natural History (AMNH) in collabo-
ration with Linköping University (LiU). The goal was to be able to visualize several
space missions made by National Aeronautics and Space Administration (NASA) and
European Space Agency (ESA) to be able to reach a wide range of people with the
incredible stories of space exploration.

Special focus in this thesis is given to extending the software in such a way that
several missions can be visualized. This includes work on estimating positions for
missions where the existing data of the different missions do not overlap. The main
additions to the core functionality in OpenSpace was time indicating trajectories, night
side texture improvement, image projections in space and image projections to irregular
bodies.
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1 Background

NASA and ESA spends huge amounts of resources to explore the solar system and to find
out more about the universe, and the results of these missions does not always reach the
general public to a desirable extent. OpenSpace is a cross platform interactive tool for space
visualization. It can not only be run on single desktop computers but also in immersive
environments and has proven to be able to network from a master computer to domes all
over the world.

Apart from visualizing space missions, OpenSpace is used on site at NASA for visualizing
space weather in real time, which has not been possible to achieve before collaborating with
the Media Technology department at LiU. This chapter goes into giving a context to this
thesis work and purpose of it in OpenSpace.

1.1 Purpose

The aim of this thesis was to continue the work on the open source software OpenSpace.
The software was already used to visualize the New Horizons mission. The focus was divided
between continuing the preparation for New Horizons flyby of Pluto in July 2015 and to
extend the software to be able to visualize other missions, such as Dawn and Rosetta. The
goal was to visualize the scientific results of these missions, in a way that is scientifically
accurate and is easy to comprehend.

In order to do this, the software had to be extended to be able to perform image projection
on arbitrary objects and a few new modules had to be written and improved. The thesis
work also covered improving the models and the visualizations as a whole.

1.2 New Horizons

New Horizons is a space mission launched by NASA in January 2006. With a gravity assist
of Jupiter in 2007, it was able to fly by Pluto on July 14, 2015, after which it will continue
out in the Kuiper belt. During the flyby it managed to take high resolution images of the
surface of Pluto and its moons using its main imaging instrument LORRI, far better than
the ones taken from the Hubble telescope. These images are projected onto Pluto’s surface
by projective texturing [2].

Even though Pluto was downgraded from a planet to a dwarf planet by the International As-
tronomical Union (IAU) soon after New Horizons was launched, the media coverage has been
quite large and its successful data gathering is, to some extent, already publicly available
[3].

1.3 Rosetta

The Rosetta mission was launched by ESA in 2004 and its main purpose is to research the
comet 67P/Churyumov-Gerasimenko. It is the first spacecraft to orbit a comet using ion
thrusters powered mainly by solar cells. During close orbit of 67P, a lander called Philae
was sent to collect data from the surface. After 211 days of hibernation it woke up in June
2015.

OpenSpace did, at the start of this internship, assume that the bodies projected to were well
approximated by a sphere, which was not the case for 67P. A big part of the internship was
therefore focusing on image projection to irregular bodies. Most of the images were taken
recently and ESA wanted to keep them to themselves to check for possible errors but as the
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project went on, more images were released. The work in this thesis focused on the Rosetta
NAVCAM [4].

1.4 Dawn

Dawn is NASA’s mission to the protoplanet Vesta and dwarf planet Ceres. Like Rosetta,
Dawn is driven by solar cells in order to be able to orbit bodies. Other factors making Dawn
a priority to include in OpenSpace was that a detailed model of Vesta is available [5] and
since Dawn was there in 2011, most of the pictures taken by the Dawn Framing Camera are
released. Dawn also has in common with New Horizons and Rosetta that it was relevant
during the time of the internship as it was approaching Ceres [6].
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2 Introduction

This section covers core concepts in OpenSpace and computer graphics. Each of the sub-
sections consists of essential parts of the implementations discussed later in this thesis.

2.1 OpenSpace

The code base of OpenSpace is in C++ with wide use GLSL shaders and Lua files for the
modules in the scene and configuration. The Lua script files returns an object with keys
and values that define what the module represents and define what class instance is added
to the scene.

Another key component in being able to visualize space in real time is the simulation time.
Each frame the simulation time is progressed according to the simulation time speed mul-
tiplied with the difference in the computer’s internal time since the previous frame. The
time class is a Singleton and can be called anywhere in the code base and is used for updat-
ing the modules properly. There is also a frame count is stored as a variable to be able to
do runtime calculations on the average frame rate per second and do animations based on it.

The modularity of OpenSpace made it easier to extend and keep separate uses of the soft-
ware in different parts of the code. There were a few design patterns in place in OpenSpace,
such as the Singleton and Factory patterns [7]. The benefit of using design patterns is not
only to solve the problem at hand but also to increase the code readability and facilitate
understanding for other developers [1].

2.2 Power Scaled Coordinates

A recurring problem in visualizing in such a huge coordinate space as the universe is the
numerical limits of the integer and floating point types. To extend the range of what a
coordinate can represent, a fourth number is added to the three dimensional coordinate
which indicates what exponent e should be in Equation 1. The implementation is based on
the work by Fu and Hanson [8].

(x, y, z) = (x′, y′, z′) · 10e (1)

Even though this was an improvement in OpenSpace, there are still issues with the precision
of the floating point values that represent the position of objects far away from the global
origin, the solar system barycenter. A workaround was implemented just before the work of
this thesis where the user can manually change the global origin to be closer to the camera,
hence decreasing the position values and increasing their accuracy.

2.3 Interleaved Arrays

Another central concept in computer graphics programming is how to represent the data
of the vertices of a model to the Graphical Processing Unit (GPU). Interleaved arrays are
used in several of the implementations discussed in this thesis. It was achieved by using the
OpenGL function glVertexAttribPointer [9]. A code example from OpenSpace can be
found in Appendix A and Figure 1 is demonstrating how the array is structured for accessing
the data in the GLSL shaders, the texture coordinate and normal vectors are associated with
a vertex position and located next to each other in the memory.
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Figure 1: Interleaved vertex array

2.4 SPICE

SPICE is an information system with a toolkit available in C. OpenSpace has a singleton
wrapper class for CSPICE to calculate positions, rotation matrices, converting coordinates
between different coordinate systems and much more. There are many data set kernels
publicly available for the solar system and the space missions handled in this thesis. Before
the rendering loop is called in the initialization of OpenSpace, the kernels defined in the
currently used module files are loaded to be able to retrieve the interesting data [10].

9



3 Method

This section of the thesis aims to explain ways to achieve the goals of the thesis and further
building on the theory used in section 4. It elaborates on data collection and handling, the
approach for creating a plane in space showing an image and the basics in projecting the
images to target bodies.

3.1 Gathering the Data

To visualize the space missions in OpenSpace, the following data has to be acquired:

• A 3D spacecraft model.

• SPICE mission specific data kernels for the instruments, the position and the rotation
of the spacecraft.

• Images taken by the spacecraft with information about the exact time they were taken
and the target of the image.

• A SPICE data kernel about the target’s rotational frames, positions and radii.

• If the target is not accurately described as a triaxial ellipsoid, an accurate 3D model
of the target.

The data was gathered from different sources, images and kernels usually from official File
Transfer Protocol (FTP) servers. The implementation also required detailed knowledge and
information about the spacecraft’s and payload on board.

In order to be able to get the best possible result from projecting the taken images to 3D
models, these models have to be as detailed and accurate as possible. The two primary
targets used for model projection was Vesta and 67P. In the case of Vesta, NASA released a
highly detailed model. One of the very best models available was from a Swedish enthusiast
named Mattias Malmer [11], who released updated models as better pictures of the actual
comet was released.

3.2 Missing Data

A common issue in most data visualization is how to handle missing data. SPICE generates
errors when missing data is requested [12]. The kernels containing data about the space
missions can have gaps in time for when a position or rotational matrix can be retrieved.
During the startup of OpenSpace, while the data kernels are loading, a map of positional and
rotational data coverage is filled. This map facilitates runtime determination whether the
current simulation time of OpenSpace is covered by the data kernels loaded. For OpenSpace
not to crash when trying to look at spacecrafts outside of the kernel defined time range,
position and rotation approximation algorithms were implemented and explaned in 4.1.

3.3 Image Plane

In order to be able to show images that were taken by the spacecraft but only partially or
not at all on the surface of a target; an image plane is introduced. The idea of the plane is
to be placed in the view frustum of the camera when the image is taken and show the image
as a texture on the plane.
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This plane made it possible to see some exciting edge images such as the Europa rise in
Figure 8. To reduce cluttering and avoid planes sticking out of bodies, only the most recent
image for an instrument is shown, and can be toggled off at runtime. Since all bodies in
the solar system are in constant motion and rotation with respect to the Sun, the plane was
reparented. This means that the plane is expressed in the target local coordinate system
and, for example, stays on the edge of its target by adding the targets global position and
rotation each frame.

3.4 Texture Projection

Projective texture mapping [2] is used for image projecting to bodies and requires a number
of matrices and matrix multiplications. To get the projected texture coordinate, the position
of each vertex is multiplied with the model transformation and then the projector matrix as
can be seen in the vertex shader in Appendix B. The model transform for the body in the
current simulation time is returned by the SPICE function pxform c.

The projector matrix is a result of a view matrix, a perspective projection matrix and a bias
matrix for normalization. The view matrix is shown in Equation 2 contains the following
normalized vectors:

• Spacecraft camera boresight, retrieved using SPICE function getfov c (v1).

• The cross product vector of the upwards direction and the boresight of the camera
(v2).

• The cross product vector of v1 and v2 (v3).

• The dot products between the position of the scene camera and vectors v2, v3 and v1
(v4).

V m =


v2.x v3.x v1.x 0
v2.y v3.y v1.y 0
v2.z v3.z v1.z 0
v4.x v4.y v4.z 1

 (2)

The perspective projection matrix is found using the OpenGL Mathematics (GLM) function
glm::perspective providing the angular separation, aspect ratio, near and far plane for
the spacecraft camera. The bias matrix used for normalization is shown in Equation 3. The
full C++ implementation of the projector matrix calculation can be found in Appendix C.

Bm =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0

0.5 0.5 0.5 1

 (3)

The projected texture coordinates are within the field of view if they are within the range
of 0 to 1. The full coordinate calculation is expressed in Equation 4.

ProjectedCoordinate = Bm · PerspectiveProjectionMatrix

· V m ·ModelMatrix · V ertexPosition
(4)
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3.5 Irregular Body Projection

In order to be able to project images to bodies that are not well approximated by a sphere, a
new projection algorithm is implemented and discussed further in Section 4.5 and Appendix
B.

Because drawing to a texture on the Central Processing Unit (CPU) would take a really
long time and the fact that there is no support for reading and writing to a texture in a
single shader pass, a projection pass was introduced before the actual drawing, creating a
feedback loop in the graphics pipeline.

There are, however, still problems to be solved with the projection. The criteria for whether
a fragment should be projected to is to be within the field of view of the instrument taking
the image at the time that it is taken and that the normal direction should point towards
the spacecraft. This can cause some false projections for irregular bodies when fragments
meet these criteria, as illustrated in Figure 2. A possible solution to the problem is a Z
buffer implementation in the shaders.

Figure 2: False projections illustrated on the shape of 67P. The fragments covered in red
should not be projected to as it is not visible for the spacecraft to the right.
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4 Implementation

This chapter covers the implementation details of the main additions to OpenSpace. All
visible objects in the scene of OpenSpace are subclasses of a class called Renderable and im-
plement the functions render and update. Each frame, a so called engine traverses through
a scene graph, updates and renders the renderable objects. A big part of the work covered
in this thesis was to modify and add subclasses to Renderable, even though some modifica-
tions were also made in the render engine and scene graph classes, mainly to facilitate the
new classes. Every Renderable subclass is linked to vertex and fragment shaders, where the
actual position in the scene and color of each fragment is calculated.

4.1 Missing Data

As discussed in section 3, approximated positions and rotations are calculated instead of
generating errors. The following cases are considered:

• The current simulation time is before the times covered in the loaded kernels: The
spacecraft is placed in the first available position.

• The current simulation time is after the times covered in the loaded kernels: The
spacecraft is placed in the last available position retrieved from the data kernels.

• The current simulation time is between times of kernel coverage: The position is in-
terpolated according to the interpolation in Algorithm 4.1.

difference = later - earlier;

quote = (time - earlier) / difference;

pos[0] = (pos_earlier[0] * (1 - quote) + pos_later[0] * quote);

pos[1] = (pos_earlier[1] * (1 - quote) + pos_later[1] * quote);

pos[2] = (pos_earlier[2] * (1 - quote) + pos_later[2] * quote);

Algorithm 4.1: Linear interpolation, for pos[0], pos[1] and pos[2] positions.

A similar algorithm is put in place for the rotational matrices and can be found in Appendix
D.

The estimated position can give a false sense of accuracy. It is therefore essential to show
the user that the spacecraft position might not be accurately placed in the simulation. In
order to show the possible inaccuracy, a uniform transparency level varying with time was
given to the spacecraft model in all of these three cases. Using the simulation frame count
and a sine wave function, the alpha component of all the fragments in the model varies in
uniform between 0.5 and 1, as demonstrated in Algorithm 4.2.

int frame = _frameCount % 180;

float fadingFactor = static_cast<float>(sin((frame * M_PI) / 180));

_alpha = 0.5f + fadingFactor * 0.5f;

Algorithm 4.2: Partial transparency depending on the frame count implemented in C++.
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4.2 Night Side

For the general impression of the visualization and to give the planets (with Earth as pri-
mary objective) a more realistic dark side, the possibility to add a night side texture to
planets is added. This texture is then mixed with the day light texture on the GPU for fast
calculations, using the GLSL function mix [9] in combination with the dot product of the
opposite direction of the sun and the normal direction of the fragment. The code is shown
in Algorithm 4.3.

mix(day, night, (1 + dot(fragmentNormal, -(sunDirection)) / 2);

Algorithm 4.3: Mixing texture in the fragment shader with the dot product between the
fragment normal and opposite sun direction as the quote, implemented in GLSL.

4.3 Image Plane

In order to get the coordinates for the image plane, expressed in the targets local coordinate
system, a number of SPICE functions are utilized. getfov c returns the bounds of the
Field of View (FoV) for a specified instrument. spkpos c provides the vector between the
spacecraft and the target, and pxform c convert these vectors from spacecraft frame to
the galactic frame to be able to express the plane in different coordinate systems. The FoV
bounds are projected to a vector orthogonal to the vector from the spacecraft to the target
using vproj c. To finally get the corner coordinates in the local coordinate system, the
target vector is subtracted and converted into a power scaled coordinate.

These corner coordinates are then used for drawing a plane and the image taken by the
spacecraft is used as texture for the plane, with texture and position coordinates in an in-
terleaved array. An algorithm traversing through all possible targets is used for cases with
multiple targets, where the closest target becomes the parent of the plane. See Appendix E
for the code used for converting the corner positions and creating the plane vertex data.

4.4 Time Indicating Trajectories

The trajectories were initially drawn using only GL LINE STRIP between points along the
trajectory. This does show where the spacecraft is traveling but not how fast it is moving
or when it is in a specific position.

By carefully choosing in what time interval these points were placed and combining the line
with GL POINTS, the speed of the spacecraft can be derived from the path as well. Figure
4 demonstrates not only how New Horizons flew past Pluto, but also gives a sense of its
speed. In this case the markers is placed in 15 minute intervals. To determine whether a
marker is an hourly marker, gl VertexID and the GLSL function mod is used. The color
interpolation is done by default when the color is set in the vertex shader and then using
the color for each fragment in the fragment shader. A maximum distance from the target
body is also used to only display the points during the closest approach. The GLSL shader
code to achieve this is found in Appendix F.
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4.5 Irregular Body Projection

In the projection pass of the image projection, a texture is bound as the Frame Buffer Object
(FBO) and the full model data with location, texture and normal are sent as an interleaved
array. The texture coordinate was then matched to the clip space coordinates, outputting
a new texture with the image projected onto it. The vertex and fragment shaders of the
projection pass can be found in Appendix B.
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5 Results

This section is showing screen captures from OpenSpace of the modules discussed in Sections
3 and 4. Figure 3 shows the main parts of Rosetta’s observations of 67P. The same trajectory
drawing class is used for drawing Dawn’s orbit around Vesta in Figure 5. For the trajectory
of New Horizons flyby of Pluto, the time indicating trajectory is seen in Figure 4. The sec-
tion is also showing the results of the night side texturing, image plane and model projection.

5.1 Trajectories

All of the spacecraft trajectories in these images are drawn with respect to the target body.
When drawing the trajectories with regards to the Sun, they are almost parallel to the target
movement which is less intuitive.

Figure 3: Trajectory without time stamps, used for Rosetta’s path around 67P in 2014 and
2015. It is showing both low and high altitude orbits and running the maneuvers required
to land Philae.
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Figure 4: For New Horizons’ closest approach to Pluto, the trajectory with time stamps is
used to indicate the speed and distance to Pluto. The yellow dots indicate hourly marks
and the gray dots indicate 15 minute intervals for the current UTC time.

Figure 5: Dawn’s g-shaped orbit around Vesta in 2011. While Rosetta was altering its
altitude, Dawn kept approaching until it departed for Ceres.
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Figure 6: Interpolated trajectory of Dawn in late 2009. For demonstration purpose, the
data kernel for positions in November 2009 was removed.

5.2 Night Side

Instead of being completely black or just a darker version of the day texture, Figure 7 shows
how a city light map is mixed in.

Figure 7: The night side of Earth, mixing the day texture with a city light texture map for
a more realistic look.
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5.3 Image Plane

The image plane was introduced to be able to see the images taken on the edges of targets.
This can show outgassing of comets, other objects caught in the same frame such as Europa
in Figure 8 or to get a feeling of the size of the field of view from which the resolution can
be calculated. In Figure 9 the image taken is framing Charon, demonstrating the surface to
background ratio.

Figure 8: The LORRI image plane on the edge of Jupiter on February 28, 2007, just as the
moon Europa rises over the horizon from perspective of New Horizons.
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Figure 9: The LORRI image plane at Pluto’s largest moon Charon, just after closest ap-
proach covering most of the back side. The image used here was an image placeholder as
it was produced before it actually existed. It was placed according to a predicted event
schedule provided by the New Horizons mission team scientists.
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5.4 3D Model Projection

The image projection addition in this thesis was focused on irregular bodies. Figure 10 and
Figure 11 are both examples from Rosetta studying 67P and how the images are pasted
into the texture of the comet. This provides details that a shape model can not illustrate
without high resolution textures and an advanced global illumination technique.

Figure 10: Image projection after a 2 by 2 mosaic of 67P taken by the Rosetta NAVCAM
during approach in September 2014.
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Figure 11: As the spacecraft comes closer, the pictures naturally get more detail of the
surface. This image projected was manually picked from the official Rosetta blog [13] and
was taken by the NAVCAM in late October 2015. The distortion of the image to the left is
because another 2D image taken from the left is projected to the 3D surface.
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6 Discussion

This section aims to discuss several aspects of the thesis. The difficulties for scientists who
wants to contribute but are not allowed to, inaccuracies and possible flaws in the implemen-
tations as well as describing the attempts to reach a wide range of people.

6.1 Scientists Involvement

The responses from scientists at NASA and ESA were positive. The International Traffic
in Arms Regulations (ITAR) [14] does however complicate the data acquisition. It makes
some of the material that NASA produces unavailable, and is also a reason for the mission
team to hold on to the data for a while after they get it.

The naming conventions of the kernel files are not always very straight forward which made
finding the right kernels somewhat challenging. There are usually huge amounts of data
associated with a mission and not everything is necessary for the visualization. Because of
these factors, the help in navigating amongst the data given from scientists at JPL and ESA
was much appreciated.

6.2 Interpolation

The linear interpolation for positions and rotations could have been replaced by a more
advanced interpolation algorithm to more accurately approximate the positions. Spline in-
terpolation for example would require more coverage but is a possible extension. One could
however argue that it is more obvious to a user that the position is approximated when the
trajectory follows a straight line as in Figure 6.

6.3 PlutoPalooza

When trying to reach a lot of people, it is important to demonstrate the ongoing progress.
PlutoPalooza is a series of events initiated by NASA, one of which took place at AMNH
on May 14th, 2015. This was a great chance to show OpenSpace. A few hundred teachers
were invited to see mission scientists talk about the Pluto mission using OpenSpace as a
visualization tool. This meant that we had to not only produce a stable release version but
also had several run-throughs of what to show and when. This event together with many
others, mainly ‘Breakfast at Pluto’ hosted at multiple planetariums across the globe, has
led to a lot of media coverage for OpenSpace [1].

Even though all the last minute fixes and preparations required for the demos take a lot of
valuable development time, they are essential for the core purpose of the software and its
recognition.

6.4 Sources of Error

Even though everyone involved were happy with the results, some slight misalignment ap-
peared on some of the images. There are numerous possible reasons for this, and the most
likely truth is that it is some kind of combination of the issues discussed in this section.

The SPICE data kernels can vary significantly in size and time range. A predicted path
or rotational matrix is usually less frequently sampled which does not only lead to smaller
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files but also to a lower accuracy since these samples are used to estimate the position.
The internal position estimation system in the SPICE C toolkit is more advanced than
the one demonstrated in Figure 6, but has no guarantee of returning the exact position at
all times. Another reason for this is that the positions for the bodies are sometimes unknown.

The FoV angular separation of the camera and the image time stamps are other possible
precision error sources. For the images of 67P collected from the Rosetta blog [13] the time
stamps were given as whole seconds. There is no reason why the images would not be taken
at such an even time but in the worst case it could have been rounded from 0.5 seconds
away which could lead to a significant difference in where the camera is aimed.

The models used for image projection has to be not only accurate in shape but also in
rotation and scale. The Vesta model [5] had to be carefully stitched together and scaled
according to an approximated scaling factor given on their website. The result after trial
and error was satisfying but might still be a source of error.

Light has finite speed. This means that there will be a difference between where a target
actually is and where it is perceived to be, the latter being where it was when the photons
left the target. Stellar aberration is another astronomical phenomenon that influences the
apparent position of bodies depending on their relative speed. When using the SPICE func-
tion spkpos c, there is an aberration correction flag argument. When using these flags, the
returned value is supposed to compensate for these factors but there is a risk that these
calculations are sources of inaccuracy.
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7 Conclusion

The thesis was considered successful in preparing for New Horizons flyby and extending
the software for multiple mission support. Projection to non-spherical objects was a very
well appreciated addition even though it is not yet perfected. The image projection on 67P
looked good in the dome in Hayden Planetarium where one really gets a sense of immersion.

There is definitely a certain level difficulty in visualizing such advanced engineering to both
satisfy the mission scientists and keep a level of scientific accuracy while producing some-
thing comprehensible for the general public. There are still many more intuitive ways to
show data to be discovered, but there is definitely progress in the right direction as we ex-
plore and learn more about our universe.

“To be able to see our context in this larger sense, at all scales, helps us all I think, in
understanding where we are and who we are in the universe.” - Carter Emmart, 2010 [15]
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A Interleaved Array

The following C++ code is a practical example from OpenSpace of how to achieve an
interleaved array using OpenGL functions.

glEnableVertexAttribArray(0);

glEnableVertexAttribArray(1);

glEnableVertexAttribArray(2);

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, vertexSize,

reinterpret_cast<const GLvoid*>(offsetof(ModelGeometry::Vertex, location)));

glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, vertexSize,

reinterpret_cast<const GLvoid*>(offsetof(ModelGeometry::Vertex, tex)));

glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, vertexSize,

reinterpret_cast<const GLvoid*>(offsetof(ModelGeometry::Vertex, normal)));
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B Irregular Body Projection

Following is the code from the vertex and fragment shaders constituting the projection pass.
The challenge is to match the texture coordinate to the clipping space of the FBO which is
the target body texture.

B.1 Vertex Shader

uniform mat4 ProjectorMatrix;

uniform mat4 ModelTransform;

uniform vec2 _scaling;

layout(location = 0) in vec4 in_position;

layout(location = 1) in vec2 in_st;

layout(location = 2) in vec3 in_normal;

...

out vec4 ProjTexCoord;

out vec2 vs_uv;

void main() {

vs_position = in_position;

vec4 tmp = in_position;

vec4 position = pscTransform(tmp, ModelTransform);

vs_position = tmp;

vec4 raw_pos = psc_to_meter(in_position, _scaling);

ProjTexCoord = ProjectorMatrix * ModelTransform * raw_pos;

vs_normal = normalize(ModelTransform * vec4(in_normal,0));

//match clipping plane

vs_uv = (in_st * 2) - 1;

gl_Position = vec4(texco, 0.0, 1.0);

}

B.2 Fragment Shader

...

in vec4 ProjTexCoord;

in vec2 vs_uv;

..

bool inRange(float x, float a, float b) {

return (x >= a && x <= b);

}

void main() {

vec2 uv = vec2(0.5,0.5) * vs_uv + vec2(0.5,0.5);

vec4 projected = ProjTexCoord;

//normalize and invert coordinates

projected.x /= projected.w;

projected.y /= projected.w;

projected.x = 1 - projected.x;

projected.y = 1 - projected.y;

if((inRange(projected.x, 0, 1) && inRange(projected.y, 0, 1))

&& (dot(n, boresight) < 0)) {

color = texture(projectTexture, projected.xy);

} else {

color = texture(currentTexture, uv);

}

}
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C Projector Matrix Computation

This is the C++ function used for computing the projector matrix in the body projection
classes of OpenSpace.

glm::mat4 RenderableModelProjection::computeProjectorMatrix(

const glm::vec3 loc, glm::dvec3 aim, const glm::vec3 up) {

//rotate boresight into correct alignment

_boresight = _instrumentMatrix*aim;

glm::vec3 uptmp(_instrumentMatrix*glm::dvec3(up));

// create view matrix

glm::vec3 e3 = glm::normalize(_boresight);

glm::vec3 e1 = glm::normalize(glm::cross(uptmp, e3));

glm::vec3 e2 = glm::normalize(glm::cross(e3, e1));

glm::mat4 projViewMatrix = glm::mat4(e1.x, e2.x, e3.x, 0.f,

e1.y, e2.y, e3.y, 0.f,

e1.z, e2.z, e3.z, 0.f,

-glm::dot(e1, loc), -glm::dot(e2, loc), -glm::dot(e3, loc), 1.f);

// create perspective projection matrix

glm::mat4 projProjectionMatrix = glm::perspective(

_fovy, _aspectRatio, _nearPlane, _farPlane);

// bias matrix

glm::mat4 projNormalizationMatrix = glm::mat4(0.5f, 0, 0, 0,

0, 0.5f, 0, 0,

0, 0, 0.5f, 0,

0.5f, 0.5f, 0.5f, 1);

return projNormalizationMatrix*projProjectionMatrix*projViewMatrix;

}
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D Transformation Matrix Estimation and Linear Inter-
polation

The is the algorithm in OpenSpace of how the rotational matrices are estimated in the three
cases where the time requested is either before, after or between covered times. If it is in
between, the transform matrix is interpolated using linear interpolation, implemented in
C++.

if (coveredTimes.lower_bound(time) == first) {

// coverage later, fetch first transform

pxform_c(fromFrame.c_str(), toFrame.c_str(),

*first, (double(*)[3])glm::value_ptr(positionMatrix));

}

else if (coveredTimes.upper_bound(time) == last) {

// coverage earlier, fetch last transform

pxform_c(fromFrame.c_str(), toFrame.c_str(),

*(coveredTimes.rbegin()), (double(*)[3])glm::value_ptr(positionMatrix));

}

else {

// coverage both earlier and later, interpolate these transformations

earlier = *std::prev((coveredTimes.lower_bound(time)));

later = *(coveredTimes.upper_bound(time));

glm::dmat3 earlierTransform, laterTransform;

pxform_c(fromFrame.c_str(), toFrame.c_str(),

earlier, (double(*)[3])glm::value_ptr(earlierTransform));

pxform_c(fromFrame.c_str(), toFrame.c_str(),

later, (double(*)[3])glm::value_ptr(laterTransform));

difference = later - earlier;

quote = (time - earlier) / difference;

for (int i = 0; i < 3; ++i) {

for (int j = 0; j < 3; ++j) {

positionMatrix[i][j] = (earlierTransform[i][j] * (1 - quote)

+ laterTransform[i][j] * quote);

}

}
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E Image Plane

These are the core C++ code lines for transforming the FoV of a spacecraft instrument into
a plane with texture coordinates in an interleaved array.

for (int j = 0; j < bounds.size(); ++j) {

frameConversion(bounds[j], frame, GalacticFrame, currentTime);

cornerPosition = orthogonalProjection(vecToTarget, bounds[j]);

cornerPosition -= vecToTarget;

frameConversion(cornerPosition, GalacticFrame, _target.frame, currentTime);

projection[j] = PowerScaledCoordinate::CreatePowerScaledCoordinate(

cornerPosition[0], cornerPosition[1], cornerPosition[2]);

projection[j][3] += 3; // SPICE returns distances in KM

}

...

const GLfloat vertex_data[] = { // square of two triangles

// x y z w s t

projection[1][0], projection[1][1], projection[1][2],

projection[1][3], 0, 1, // Lower left

projection[3][0], projection[3][1], projection[3][2],

projection[3][3], 1, 0, // Upper right

projection[2][0], projection[2][1], projection[2][2],

projection[2][3], 0, 0, // Upper left

projection[1][0], projection[1][1], projection[1][2],

projection[1][3], 0, 1, // Lower left

projection[0][0], projection[0][1], projection[0][2],

projection[0][3], 1, 1, // Lower right

projection[3][0], projection[3][1], projection[3][2],

projection[3][3], 1, 0, // Upper left

};

glBindVertexArray(_quad);

glBindBuffer(GL_ARRAY_BUFFER, _vertexPositionBuffer);

glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data, GL_STATIC_DRAW);

glEnableVertexAttribArray(0);

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE,

sizeof(GLfloat) * 6, reinterpret_cast<void*>(0));

glEnableVertexAttribArray(1);

glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE,

sizeof(GLfloat) * 6, reinterpret_cast<void*>(sizeof(GLfloat) * 4));
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F Time Indicating Trajectories

To be able to differentiate missions, the base color (used as hourly dots for New Horizons
flyby of Pluto) is set as a uniform variable. Following is the main functionality in the vertex
and fragment shaders for the time indicating trajectories.

F.1 Vertex Shader

in vec4 in_point_position;

uniform vec3 color;

out vec4 vs_point_position;

out vec4 vs_point_color;

...

void main() {

vec4 gray = vec4(0.6f, 0.6f, 0.6f, 0.8f);

float bigPoint = 5.f;

float smallPoint = 2.f;

bool isHour = (0.1f < mod(gl_VertexID, 4);

vec4 tmp = in_point_position;

vec4 position = pscTransform(tmp, ModelTransform);

vs_point_position = tmp;

...

if(isHour) {

vs_point_color.xyz = color;

gl_PointSize = bigPoint;

}

else {

vs_point_color = gray;

gl_PointSize = smallPoint;

}

if (distance > maxDistance) {

gl_PointSize = 0;

}

}

F.2 Fragment Shader

in vec4 vs_point_position;

in vec4 vs_point_color;

...

void main() {

vec4 position = vs_point_position;

vec4 diffuse = vs_point_color;

...

}
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